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Abstract. We consider the thermal correlation functions of vector and axial-vector currents and evaluate
corrections to the vector and axial-vector meson pole terms to one loop in chiral perturbation theory. As
expected, the pole positions do not shift to leading order in temperature. But the residues decrease with
temperature. We review briefly other methods in the literature to determine these pole parameters. We
find our evaluation to disprove a result on the mixing of the correlation functions at finite temperature.

1 Introduction

An important topic in the strong interaction at non-zero
temperature is the calculation of shifts in the masses and
the couplings which hadrons suffer while moving through
a heat bath. Apart from their immediate relevance in un-
derstanding the experimental data on heavy ion collisions,
these shifts as functions of temperature provide an effec-
tive description of the thermal properties of strong inter-
action. Mention must be made here also of the conden-
sates, which are related more directly to the condensed
matter aspects of the strong interaction, particularly to
the possibility of a phase transition with the increase of
temperature.

At low energies processes involving the strong inter-
action as described by QCD are best analysed in chi-
ral perturbation theory [1]. It has long been established
phenomenologically that the symmetry group SU(3)R ×
SU(3)L of the QCD Lagrangian of three flavours of mass-
less quarks is broken spontaneously to its diagonal sub-
group SU(3)V, giving rise to the octet of Goldstone
bosons. Chiral perturbation theory realises this symmetry
non-linearly on the physical fields. This framework consid-
erably restricts the interactions among hadrons involving
the Goldstone bosons. It has led to a whole set of accurate
analyses of low energy hadronic processes [2,3].

Chiral perturbation theory finds a natural application
to problems of the strong interaction at non-zero tem-
perature T . At low temperature pions dominate the heat
bath, the other hadrons being exponentially suppressed.
One is thus led to consider the reduced chiral symmetry
group G = SU(2)R×SU(2)L, which spontaneously breaks
to the isospin subgroup H = SU(2)V. This symmetry im-
plies that interactions involving low energy pions are weak.
In calculating quantities at low temperature these inter-
actions can therefore be treated as a perturbation. A wide
variety of problems has been treated in this way [4,5]. In

particular, it has been applied to the correlation function
of nucleon currents to find the position of the nucleon pole
and its residue at finite temperature [6]. In this work we
apply a similar procedure to the isotriplets of vector and
axial-vector mesons.

Here we consider the correlation functions of vector
and axial-vector currents defined in QCD. To calculate
the pole parameters to O(T 2), we draw all the one loop
Feynman diagrams with vector and axial-vector mesons
and pions, which contribute to these correlation functions.
With the form of interaction vertices prescribed by chi-
ral perturbation theory, it is simple to evaluate the finite
temperature parts of these diagrams near the poles in the
chiral limit. Although we begin with a large number of di-
agrams, only a few actually contribute to the meson poles
to order T 2. We also argue that other particles not in-
cluded in our scheme cannot change the results to this
order.

In Sect. 2 we summarise the chiral transformation rules
of the relevant field variables to arrive at the chirally in-
variant Lagrangian of the spin-1 mesons and pions. In
Sect. 3 we explicitly obtain the interaction vertices needed
to evaluate the Feynman diagrams. In Sect. 4 we find the
shift in the masses and couplings of these mesons to
O(T 2). Finally in Sect. 5 we summarise our results and
comment on other attempts to determine these shifts. The
appendix discusses the 2 × 2 matrix and the Lorentz ten-
sor structures of the correlation functions in the real time
thermal field theory.

2 Chiral perturbation theory

It is convenient to review in this section the definition of
the appropriate field variables and their transformation
properties, leading to the effective Lagrangian of chiral
perturbation theory [7,8]. The Goldstone fields πa(x) re-
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side in the coset space of G with respect to H. A standard
parameterisation of this space allows one to collect these
fields in the form of an unitary matrix,

u(x) = eiπ(x)/2Fπ , π(x) =
3∑

a=1

πa(x)τa, (2.1)

where the constant Fπ can be identified with the pion de-
cay constant, Fπ = 93 MeV, and τa are the Pauli matrices.
The matrix u transforms under G according to the rule

u → gRuh
† = hug†

L, (2.2)

where gR,L ∈ SU(2)R,L and h(π) ∈ SU(2)V. The matrix
U = u2 then transforms as

U → gRUg
†
L. (2.3)

Any multiplet ψ(x) of non-Goldstone fields transforms as

ψ → hψ, (2.4)

with h in the appropriate representation. In particular,
if they also belong to the adjoint (triplet) representation,
such as the vector and the axial-vector mesons we are con-
sidering here, we may use the same h as in (2.2): Denoting
the triplet fields by Rµ(x),

Rµ(x) =
1√
2

3∑

a=1

Ra
µ(x)τa, (2.5)

it transforms as
Rµ → hRµh

†. (2.6)

The singlet field Sµ(x), of course, remains unchanged,
Sµ → Sµ.

As already stated we are concerned here with the eval-
uation of the two-point functions of the vector and axial-
vector currents of QCD,

V a
µ (x) = q̄(x)γµ

τa

2
q(x), Aa

µ(x) = q̄(x)γµγ5
τa

2
q(x),

(2.7)
in the effective field theory. This is most conveniently car-
ried out in the external field method, where one introduces
external fields va

µ(x) and aa
µ(x) coupled to the currents

V a
µ (x) and Aa

µ(x) [1]. The original QCD Lagrangian L(0)
QCD

of massless quarks is then augmented to

L(0)
QCD + va

µ(x)V µ
a (x) + aa

µ(x)Aµ
a(x)

= iq̄Rγµ{∂µ − i(vµ + aµ)}qR
+ iq̄Lγµ{∂µ − i(vµ − aµ)}qL + · · · (2.8)

where qR(qL) is the right (left) handed component of q,
qR,L = (1/2)(1 ± γ5)q. The ellipsis denotes the (flavour
neutral) gauge field term, and vµ(x) and aµ(x) are matri-
ces in flavour space,

vµ(x) =
3∑

a=1

va
µ(x)

τa

2
, aµ(x) =

3∑

a=1

aa
µ(x)

τa

2
. (2.9)

The global invariance of L(0)
QCD is now raised to local in-

variance under the transformations

q′
R = gRqR, q′

L = gLqL,

v′
µ ± a′

µ = gR,L(vµ ± aµ)g†
R,L + igR,L∂µg

†
R,L, (2.10)

where the group elements gR,L are now x-dependent.
The field strengths corresponding to the external po-

tentials are given as usual by

Fµν
R,L = ∂µ(vν ± aν) − ∂ν(vµ ± aµ) − i[vµ ± aµ, vν ± aν ].

(2.11)
The covariant derivatives of U and Rµ are given by

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) (2.12)

and
∇µRν = ∂µRν + [Γµ, Rν ], (2.13)

with the connection

Γµ =
1
2
(
u†[∂µ − i(vµ + aµ)]u+ u[∂µ − i(vµ − aµ)]u†) .

(2.14)
Thus the building elements of the effective Lagrangian are
U , DµU , Fµν

R,L, Rµ, Sµ and ∇µRν .
Note that while some of the above variables (U , DµU ,

Fµν
R,L) transform under the full group G, others (Rµ, Sµ

and ∇µRν) transform under the unbroken subgroup H.
One may take advantage of the mixed transformation rule
of u to redefine the former variables so as to transform
under H only. Thus one introduces the field variables [7],

uµ = iu†DµUu
† = u†

µ (2.15)

and
fµν

± = ±u†Fµν
R u+ uFµν

L u†. (2.16)

We now use these variables to write down the leading
terms of the different pieces of the Lagrangian density,
which are invariant under H and hence also under G. To
calculate the correlation functions of isotriplets of vector
and axial-vector currents, we need the Lagrangian for the
interacting system of both the isotriplets and isosinglets
of vector and axial-vector mesons and pions in the pres-
ence of the external fields. (We shall see later that other
particles cannot contribute to the pole terms to order T 2.)
For the pions we have the familiar term,

L(π) =
F 2

π

4
〈uµu

µ〉. (2.17)

Here and below the symbol 〈A〉 stands for the trace of
the 2 × 2 matrix A. For the spin-1 meson isotriplet and
isosinglet fields, let

Rµν = ∇µRν − ∇νRµ, Sµν = ∂µSν − ∂νSµ. (2.18)

Then the kinetic terms take the form

Lkin(R,S) =
∑(

−1
4
〈RµνR

µν〉 +
1
2
m2

R〈RµR
µ〉
)

+
∑(

−1
4
SµνS

µν +
1
2
m2

SSµS
µ

)
, (2.19)
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where the two sums run over the isotriplets and the isos-
inglets respectively.

The leading coupling terms linear in the octets of the
vector and the axial-vector fields have been obtained in
[7,8] for the symmetry group SU(3) × SU(3). As men-
tioned already, the symmetry reduces to SU(2) × SU(2)
at finite temperature. In effecting this reduction, we keep
the masses of the physical particles in each of the octets
the same but consider the interaction separately for the
isotriplets [ρ(770), a1(1230)] and isosinglets [ω(782),
f1(1282)]. Restricting to terms relevant to one loop cal-
culations, we get for the vector meson couplings

Lint(V ) =
1

2
√

2mV
(Fρ〈ρµνf

µν
+ 〉 + iGρ〈ρµν [uµ, uν ]〉

+iHρ〈ρµ[uν , f
µν
− ]〉 +Hωεµνλσω

µ〈uνfλσ
+ 〉), (2.20)

while for the axial-vector meson such couplings are

Lint(A) =
1

2
√

2mA
(Fa1〈a1µνf

µν
− 〉 (2.21)

+iHa1〈a1µ[uν , f
µν
+ ]〉 +Hf1εµνλσf

µ
1 〈uνfλσ

− 〉).
Finally we write down the quadratic couplings of the
triplets with the singlets and between themselves,

Lint(V,A) =
1√
2
εµνλσ(g1ωµ〈ρνλuσ〉 + g2f

µ
1 〈aνλ

1 uσ〉)

+
i
2
g3〈ρµν [a1µ, uν ]〉. (2.22)

(The term 〈aµν
1 [ρµ, uν ]〉 is equivalent to the third term

above to leading order in pion momentum.) Although we
have here a number of different coupling constants, only
some of them will actually enter our results for the shifts
in particle parameters to O(T 2).

3 Perturbative vertices

The vertices needed in evaluating the one loop Feynman
diagrams for the correlation functions can be recognised
best from the diagrams themselves. Let us consider the
correlation function of two vector currents at non-zero
temperature T = 1/β,

i
∫

d4xeiq·xTr�TV a
µ (x)V b

ν (0), (3.1)

where � = e−βH/Tre−βH is the thermal density matrix of
QCD. The diagrams contributing to it are of three types,
namely those of self-energy, vertex modification and inter-
mediate states shown respectively in Figs. 1, 2 and 3. We
see that we only need vertices up to four fields, counting
both quantum (particle) and classical (external) fields. At
each vertex the pion field can appear at most quadrati-
cally. When it does appear so, the two pion fields must be
contracted at the same vertex. The resulting pion loop is
of O(T 2), if no derivative is present on the pion fields; but
the loop is of higher order if it does, allowing us to ignore

π

ρ ρ

(a)

(b)

π
ρ ρ

(c)

ρ

ω, πa1 ,

Fig. 1a–c. ρ meson pole and self-energy diagrams

(a)

(b)

(c)

(d)

ρ

π

π

ρ

π

π
ρ

ω, a , π
ρ

1

ω, a , π1

Fig. 2a–d. Vertex correction diagrams

(a)

a1, π

(b)

π

,ω

π

Fig. 3a,b. Intermediate state diagrams

such vertices. Also at each vertex the external fields can
occur at most linearly (with the exception of the vertex
in Fig. 3b). At such a vertex with an external field, the
vector or the axial-vector meson field must also occur lin-
early. Keeping these requirements in mind, we now obtain
the polynomial version of the chiral Lagrangian written in
the previous section.
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The pion Lagrangian (2.17) can be expanded as

L(π) =
1
2
(∂µπ · ∂µπ −m2

ππ · π) − Fπaµ · ∂µπ

+ vµ · π × ∂µπ + Fππ · (vµ × aµ)

+
1
2
F 2

πaµ · aµ +
1
2

{π · π(vµ · vµ − aµ · aµ)

− vµ · πvµ · π + aµ · πaµ · π} . (3.2)

Here and below we denote the isovector triplet of fields
by boldface letters. Note that we have added the pion
mass term, even though we shall evaluate the final results
in the chiral limit. The first term gives the free, thermal
pion propagator matrix. As discussed in the appendix, all
we need here is its 11-component,

∫
d4xeik·xTr�Tπa(x)πb(0)|11 (3.3)

= δab

(
i

k2 −m2
π + iε

+ 2πn(k0)δ(k2 −m2
π)
)
,

where n is the bosonic distribution function n(k0) =
(eβ|k0| − 1)−1.

The kinetic part of the Lagrangian for the spin-1 mesons
reduces to

Lkin(R,S)

= −1
2

∑

ρ,a1

{∂µRν · (∂µRν − ∂νRµ) −m2
RRµ · Rµ}

− 1
2

∑

ω,f1

{∂µSν(∂µSν − ∂νSµ) −m2
SSµS

µ}. (3.4)

The densities of the spin-1 mesons are suppressed expo-
nentially in the heat bath. So we need only the vacuum
part of the respective 11-components of the propagator
matrices, which for Ra

µ, for example, is

∫
d4xeip·x〈0|TRa

µ(x)Rb
ν(0)|0〉 = δab i(−gµν + pµpν/m

2
R)

p2 −m2
R + iε

.

(3.5)
As an illustration we now work out the vertices present

in the term 〈ρµνf
µν
+ 〉. Since fµν

+ is proportional to the
external fields, we need only the terms in ρµν without
them. Thus up to four field vertices, we have

〈ρµνf
µν
+ 〉 = 4〈∂µvν(∂µρν − ∂νρµ)〉

+
2i
Fπ

〈∂µaν [π, ∂µρν − ∂νρµ]〉 (3.6)

− 1
2F 2

π

〈∂µvν [π, [π, ∂µρν − ∂νρµ]]〉.

As already explained, we have to contract the two pion
fields in the four field vertex above. Its thermal piece is

Tr�Tπa(x)πb(x)|11 →
δab

∫
d4k

(2π)3
n(k0)δ(k2 −m2

π) = δabT
2

12
(3.7)

in the chiral limit. (We see here that any derivative on the
pion fields would result in contributions of higher order in
T ). Thus the third term in (3.6) reduces to the first one
with a T -dependent coefficient.

In this way we derive the pieces of the polynomial La-
grangian from those of the chiral Lagrangian of (2.20)–
(2.22) as

L(V ) =
Fρ

mV

{(
1 − T 2

12F 2
π

)
∂µvν · (∂µρν − ∂νρµ)

+
1
Fπ

∂µaν · (∂µρν − ∂νρµ) × π

}
(3.8)

− 2Gρ

mVF 2
π

∂µρν · ∂µπ × ∂νπ −
√

2Hω

mVFπ
εµνλσω

µ∂νπ · ∂λvσ,

L(A) = −Fa1

mA

{(
1 − T 2

12F 2
π

)
∂µaν · (∂µa1ν − ∂νa1µ)

+
1
Fπ

∂µvν · (∂µa1ν − ∂νa1µ) × π

}

+
√

2Hf1

mAFπ
εµνλσf

µ
1 ∂

νπ · ∂λaσ, (3.9)

and [u
↔
∂µ v ≡ (∂µu)v − u∂µv] as

L(V,A)

= εµνλσ

(
g1
Fπ

ωµ
↔
∂ν ρλ · ∂σπ +

g2
Fπ

fµ
1

↔
∂ν aλ

1 · ∂σπ

)

+
g3
Fπ

∂µρν · (a1µ × ∂νπ − a1ν × ∂µπ). (3.10)

In writing the above expressions, when two or more ver-
tices present themselves with the same field content, dif-
fering only in the number of derivatives on the pion field,
we retain only the one with fewer or no derivatives on it.

The coupling constants can generally be determined
from the observed decay rates of the particles. Thus the
decay rate Γ (ρ0 → e+e−) = 6.9 keV gives Fρ = 154 MeV.
Similarly the decay rate Γ (a1 → πγ) = 640 keV gives
Fa1 = 135 MeV. The latter constant can also be deter-
mined from one of the Weinberg sum rules [9], agreeing
closely with this value. The decay width Γ (ρ → 2π) =
153 MeV gives the coupling Gρ = 69 MeV. Here one ex-
pects large chiral corrections as the pions are far from be-
ing soft. Thus the chiral loops reduce this value to Gρ =
53 MeV [7]. Using this value and the decay rate Γ (ω →
3π) = 7.6 MeV, we get the dimensionless coupling con-
stant g1 = 0.87 [10]. There do not appear any data re-
lating to the decay of f1 to determine g2. The remaining
coupling constants in (3.8)–(3.10) will not appear in our
results to O(T 2).

4 Mass and coupling shifts

Given the vertices, it is simple to calculate the diagrams
of Figs. 1–3. The Lorentz tensor and the thermal matrix
structures of the two-point functions are discussed in the
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appendix, according to which the free pole term of Fig. 1a
is given in the variable E ≡ q0 for q = 0 essentially by

−E4 · (Fρ/mV)2

E2 −m2
V + iε

.

We now determine how this pole position and the
residue are modified by interactions at finite temperature.
The self-energy diagrams of Fig. 1 modify it to

−E4 · (Fρ/mV)2/(E2 −m2
V −Πt) ,

where we use (A.12) and (A.13) to construct Πt from the
finite temperature part of the polarisation tensor Παβ ,

Παβ(q) =
∑

c=ω,a1,π

Π
(c)
αβ (q), (4.1)

the sum running over the diagrams of Fig. 1b. (We have
left out Fig. 1c, which is clearly of order T 4.) To write out
these contributions we define the gauge invariant tensors

Aαβ(q) = −gαβ + qαqβ/q
2,

Bαβ(q, k) = q2kαkβ − q · k(qαkβ + kαqβ) + (q · k)2gαβ ,

Cαβ(q, k) = q4kαkβ − q2(q · k)(qαkβ + kαqβ)

+ (q · k)2qαqβ . (4.2)

The three contributions are now given by

Π
(ω)
αβ = −

(
2g1
Fπ

)2

(4.3)

×
∫

d4k

(2π)3
n(k0)δ(k2 −m2

π)
(q − k)2 −m2

V
(q2k2Aαβ +Bαβ),

Π
(a1)
αβ = −2

(
g3
Fπ

)2

(4.4)

×
∫

d4k

(2π)3
n(k0)δ(k2 −m2

π)
(q − k)2 −m2

A
(Bαβ − Cαβ/m

2
A)

and

Π
(π)
αβ = 2

(
2Gρ

mVF 2
π

)2 ∫ d4k

(2π)3
n(k0)δ(k2 −m2

π)
(q − k)2 −m2

π

Cαβ .

(4.5)
The respective contributions toΠt are (ωk = (k2+m2

π)1/2)

Π
(ω)
t (E) =

16g2
1

3F 2
π

E2(E2 −m2
V +m2

π) (4.6)

×
∫

d3kn(ωk)
(2π)32ωk

· k2

(E2 −m2
V +m2

π)2 − 4E2ω2
k

,

Π
(a1)
t (E) =

4
3

(
g3
Fπ

)2

E2(E2 −m2
A +m2

π) (4.7)

×
∫

d3kn(ωk)
(2π)32ωk

· k2(2 + E2/m2
A) + 3m2

π

(E2 −m2
A +m2

π)2 − 4E2ω2
k

and

Π
(π)
t (E) =

4
3

(
2Gρ

mVF 2
π

)2

E6
∫

d3kn(ωk)
(2π)32ωk

· k2

E4 − 4E2ω2
k

.

(4.8)

To evaluate the integrals for E2 near m2
V in the chiral

limit, we note the difference in the small k behaviour of the
denominators of the integrands: while it behaves like ∼ k2

in (4.6), they are constants in (4.7) and (4.8). Accordingly
we get [11]

Π
(ω)
t (E) = − g2

1T
2

18F 2
π

(E2 −m2
V), Π

(a1)
t ∼ Π

(π)
t ∼ O(T 4).

(4.9)
A comment on this evaluation is in order. One might think
that the equality of the masses of ρ and ω is necessary to
arrive at the T 2 behaviour of the integral in (4.6), which
would otherwise behave as T 4. But this is actually not the
case from the point of view of the physics at hand. Let
us take physical masses for the two mesons with a mass
difference ∼ 10 MeV. Then for temperatures small com-
pared to 10 MeV, the leading behaviour of the integral is
indeed ∼ T 4. However, as the temperature increases, this
behaviour goes over to one of T 2. Since we are really in-
terested in temperatures much higher than several MeVs,
it is the T 2 behaviour which is of relevance here.

Taking into account the self-energy correction given by
(4.9) and the constant vertex corrections from Fig. 2a,b,
we get for the complete pole term

−E4 (FT
ρ /mV)2

E2 −m2
V
, (4.10)

with

FT
ρ = Fρ

{
1 −

(
1 +

g2
1

3

)
T 2

12F 2
π

}
. (4.11)

It is simple to see that the remaining diagrams cannot
alter this pole term to O(T 2). Each of the remaining ver-
tex corrections of Fig. 2c,d is essentially of the form of the
corresponding self-energy integral (Πt) multiplied by the
ρ-meson pole. Then the behaviour (4.9) of the self-energies
excludes any pole contribution to O(T 2) from these cor-
rections. Of the contributions from the diagrams of Fig. 3
with intermediate states, the one with πω is like Π

(ω)
t ,

while those with πa1 and ππ have two powers of k fewer
in the integrands compared to the self-energies Π(a1)

t and
Π

(π)
t respectively. Clearly these cannot contribute to the

ρ-meson pole.
It is now also simple to establish that any particle with

a mass other than mV and not included in our calculation
cannot alter our results. The argument rests simply on
the structure of the interaction vertices without external
fields. Such a vertex must have a pion field with a deriva-
tive. Thus the loop integrals involving such a particle must
be of order higher than T 2.

It is interesting to work out the amplitude of Fig. 3a
corresponding to the intermediate state πa1. Its finite tem-
perature part is given by

− 2
(

Fa1

mAFπ

)2 ∫ d4k

(2π)3
n(k0)δ(k2 −m2

π)
(q − k)2 −m2

A

×{q2(q2 − 2q · k)Aµν −Bµν}. (4.12)
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It may be readily evaluated in the chiral limit to give
essentially [11]

T 2

6F 2
π

{
−E4 (Fa1/mA)2

E2 −m2
A

}
, (4.13)

where the expression in second bracket is the contribution
of the axial-vector meson a1 to the vacuum correlation
function of the axial-vector currents. Observe the different
origin of the O(T 2) correction to the ρ and a1 poles. While
for ρ it is given by the self-energy due to the πω and
constant vertex diagram, it is given by the intermediate
state πa1 for a1. This presence of an axial-vector meson
pole in the vector current correlation function at finite
temperature was detected earlier using PCAC and current
algebra [12].

One can calculate the axial-vector meson pole term in
the axial-vector current correlation function in an entirely
analogous manner. Again one finds that the pole position
does not shift from E2 = m2

A, and the residue FT
a1

is given
by (4.11) with g1 replaced by g2.

5 Discussion

Here we have determined the temperature dependence of
the parameters of the ρ- and a1-meson poles appearing
in the vector and the axial-vector correlation functions. It
is based on the flavour symmetry of QCD and its spon-
taneous breakdown, as embodied in chiral perturbation
theory. It allows for a low temperature expansion of these
quantities, of which we just calculate the leading term to
O(T 2). To this order the mass shift is zero, due to the
presence of derivatives on the pion fields in interaction
vertices as required by the chiral symmetry. The residues
depend on the coupling constants at the vertices ρωπ and
a1f1π and decrease with temperature. These results paral-
lel those for the nucleon calculated earlier, the above ver-
tices playing roles analogous to that of the vertex πNN̄
[6].

We may try to estimate the range of validity of our
results by comparing these with the temperature expan-
sions of other quantities. For the quark condensate the
expansion has been worked out to order T 6 [4]. It shows
that the T 2 term continues to dominate the series up to
T = 150 MeV. This may not be true in all cases, how-
ever. Take the example of the nucleon pole residue in the
nucleon correlation function. In the pion–nucleon system
there is the low energy resonance ∆(1237), which limits
considerably the range of validity of the first few terms
in the chiral perturbation series for πN scattering ampli-
tudes. Already at T = 100 MeV, the average pion energies
in the heat bath are outside this range. This situation lim-
its the validity of the T 2 term in the nucleon pole residue
to temperatures below 100 MeV.

As the πρ and πa1 systems do not have any such low
energy excitations, we may expect our calculation to order
T 2 to represent the expansion well up to temperatures of
about 150 MeV, as in the case of the quark condensate.

There is, however, one source of enhanced chiral correc-
tions to our results, which may limit this range of validity.
As mentioned earlier, at the vertices where the ρ or the
external fields couple to two pions (see Figs. 1b, 2c,d and
3a), the pion momenta are not at all soft. Thus, although
these diagrams do not contribute to order T 2, the coeffi-
cients of higher order terms may be larger.

We finally comment briefly on the different approaches
in the literature to determine the temperature dependence
of these parameters. First, there are other Lagrangian ap-
proaches. One has the massive Yang–Mills [13] and the
hidden gauge [14] formulations. Since these Lagrangians
are built on the SU(2)×SU(2) flavour symmetry, they also
produce no shift in the meson masses to O(T 2) [15,16].
However, the coefficients of T 4 quoted in these works must
be incomplete, as they do not include two loop diagrams.
One has also the more phenomenological Lagrangian of
quantum hadrodynamics [17], which produces a negligible
shift in the meson masses to O(T 2) [18].

The second approach tries to calculate the correlation
functions using soft pion techniques, but fails to repro-
duce the terms proportional to g2

1 and g2
2 in Fρ and Fa1 ,

respectively [12]. Since chiral perturbation theory actu-
ally incorporates such techniques in a systematic and re-
fined way, it is interesting to trace this disagreement. The
Tr(ace) in (3.1) can be restricted to the vacuum and the
one pion states, giving the full contribution to O(T 2) in
the chiral limit. In the pion matrix element one may use
the hypotheses of the partially conserved axial-vector cur-
rent and the algebra of currents to arrive at

Tr�TV a
µ (x)V b

ν (0) =
(

1 − T 2

6F 2
π

)
〈0|TV a

µ (x)V b
ν (0)|0〉β

+
T 2

6F 2
π

〈0|TAa
µ(x)Ab

ν(0)|0〉,

and a similar one for the axial-vector correlation function.
The subscript β in the first matrix element on the right
is a reminder that it is really not a vacuum matrix ele-
ment, since any internal (pion) line which would occur in
its perturbative evaluation must be taken as thermal. Be-
ing multiplied with T 2, the second matrix element can be
taken as a true vacuum expectation value for results to
O(T 2) and we have already verified the correctness of this
term in our calculations above.

The authors of [12] assume the first matrix element
also to be a true vacuum matrix element having no tem-
perature dependence. In terms of Feynman diagrams it
amounts to ignoring the temperature dependence of the
self-energy diagrams of Fig. 1, which can in general con-
tribute to both the pole position and the residue. In fact,
the missing g2

1 term in Fρ arises exactly from the self-
energy diagram of Fig. 1b. A similar situation arises in
the case of the correlation function of nucleon currents.
Applying the same soft pion techniques and assuming the
resulting matrix elements to be true vacuum expectation
values [19], one misses the term proportional to the axial
coupling constant of the nucleon in the residue of the nu-
cleon pole [6]. We conclude that such soft pion techniques
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as applied to the thermal correlation functions cannot re-
produce the full results of chiral perturbation theory.

The third approach is based on thermal QCD sum
rules [20,21]. It is convenient to discuss these sum rules af-
ter subtracting the corresponding vacuum sum rules, leav-
ing only T -dependent contributions. The spectral side of
such a sum rule is given by three types of one loop di-
agrams, like those of Figs. 1, 2 and 3. In the literature,
however, it is assumed to be saturated by a pole term
with T -dependent parameters and the two particle inter-
mediate states containing (at least) one pion. The inad-
equacy of this saturation scheme is revealed by the fact
that the self-energy and vertex correction diagrams are
generally not exhausted by contributions which make the
pole term T -dependent. It is the neglect of the remaining
contributions which make the existing results unreliable.
(For the incorporation of such remaining contributions in
the nucleon sum rule, see [19,22].)

The fourth and the last one is a phenomenological ap-
proach based on the (first order) virial expansion of the
self-energy of a particle [6,23]. Quite generally it expresses
the complex shift in the pole position of a particle as an
integral over the product of the forward scattering am-
plitude of a pion on the particle and the pion distribu-
tion function. Since the pion gas is rather dilute even at
a temperature ∼ 100 MeV, this formula should hold up to
higher temperatures than the results of a chiral perturba-
tion expansion to first order only. But the problem here
is to construct the scattering amplitude, which is reliable
[24].

Acknowledgements. One of us (S.M.) acknowledges support of
CSIR, Government of India.

Appendix

Here we discuss the kinematic structure of the vector and
axial-vector two-point functions. In the real time formu-
lation of thermal field theory we are using here, one has
with each physical vertex an associated (ghost) vertex to
take into account [25]. This causes all two-point functions
to take the form of 2 × 2 matrices. Thus even if we begin
with the 11-component, the perturbative expansion will
mix it up with the other components. But as we show be-
low, this complication does not arise for the problem at
hand and we actually need work with the 11-component
only.

Consider first the complete vector (or axial-vector) me-
son propagator, which appears in the self-energy diagrams
of Fig. 1. Denoting the thermal 2 × 2 matrices in this ap-
pendix by boldface letters, it satisfies the Dyson equation,

Dµν = D(0)
µν + D

(0)
µλ(−iΠλσ)Dσν . (A.1)

The free thermal propagator has the factorised form

D(0)
µν (q0, q) = U(q0)

(
D

(0)
µν 0
0 D

(0)∗
µν

)
U(q0), (A.2)

where

U(q0) =

(√
1 + n

√
n√

n
√

1 + n

)
, n = (eβ|q0|−1)−1, (A.3)

and D(0)
µν (q) is the vacuum propagator

D(0)
µν (q) =

i(−gµν + qµqν/m
2
R)

q2 −m2
R + iε

. (A.4)

From its spectral representation, the complete propagator
iDµν(q) can also be shown to admit a similar factorisation
[26]:

Dµν(q0, q) = U(q0)

(
Dµν 0
0 D

∗
µν

)
U(q0). (A.5)

It then follows from (A.1) that U(−iΠµν)U must have
the diagonal structure:

U(−iΠµν)U =

(
−iΠµν 0

0 iΠ∗
µν

)
(A.6)

The matrix equation (A.1) now collapses to the ordinary
equation

Dµν = D(0)
µν +D

(0)
µλ (−iΠλσ)Dσν (A.7)

and its complex conjugate. The only remnants of the ma-
trix structure are the relations between Πµν and the com-
ponents of Πµν . With the 11-component of the latter,
these are

Re(Π11)µν = ReΠµν , Im(Π11)µν = (1 + 2n)ImΠµν .
(A.8)

In calculations at finite temperature, one usually
prefers the matter rest frame, thereby losing explicit
Lorentz covariance. The latter may be restored by bring-
ing in the four velocity uµ in the medium1. Then the time
and space components of a four-vector qµ are converted
to Lorentz scalars, ω = u · q and q̄ = (ω2 − q2)1/2. In this
framework a gauge covariant decomposition of the polar-
isation tensor is

Πµν(q) = ΠtPµν +ΠlQµν , (A.9)

where we choose the kinematic covariants as

Pµν = −gµν +
qµqν
q2

− q2

q̄2
ũµũν , Qµν =

q4

q̄2
ũµũν , (A.10)

with ũµ = uµ − ωqµ/q
2. The invariant amplitudes are

functions of two variables, say q2 and ω. With the decom-
position (A.9) the Dyson equation (A.7) can be solved to
get

1 No confusion should arise from the earlier use of uµ as a
field variable in Sect. 2
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Dµν =
i

q2 −m2
R −Πt + iε

Pµν

+
i

q2 −m2
R − q2Πl + iε

Qµν

q2
+

i
m2

R

qµqν
q2

.(A.11)

To find the invariant amplitudesΠt,l we form the scalars

Π1 = Πµ
µ , Π2 = uµuνΠµν , (A.12)

while (A.9) gives

Πl =
1
q̄2
Π2, Πt = −1

2

(
Π1 +

q2

q̄2
Π2

)
. (A.13)

In the limit q → 0, the kinematic structures (A.10) relate
the two invariant amplitudes,

Πt(q0, q = 0) = q20Πl(q0, q = 0). (A.14)

In this limit the second equation of (A.13) simplifies to

Πt = −1
3
Π1. (A.15)

Having discussed the 2×2 matrix structure of the com-
plete propagator, we turn to the same for the two-point
functions, where for definiteness we take the one for the
vector currents. From the self-energy diagrams of Fig. 1
this gets the contribution

δab

(
FV

mV

)2

(q2gλ
µ − qµq

λ)Dλσ(q2gσ
ν − qσqν)

= δabU(q0)

(
Gµν 0
0 −G∗

µν

)
U(q0), (A.16)

where

Gµν = −q4
(
Fρ

mV

)2

(A.17)

×
(

1
q2 −m2

V −Πt + iε
Pµν +

1
q2 −m2

V − q2Πl + iε
Qµν

q2

)

on using (A.11). Note that at q = 0 the two pole positions
above coincide due to the kinematic constraint (A.14).
The vertex correction diagrams of Fig. 2c,d are of the form

ΠµλD
(0)
λν = U−1(q0)

(
ΠµλD

(0)
λν 0

0 Πµλ∗D(0)∗
λν

)
U(q0),

(A.18)
while the diagrams Fig. 3a with intermediate states are of
the form given by (A.5).

We see that the results of the evaluation of different
diagrams are typically of the form of a diagonal matrix,
sandwiched between U or U−1. Near the meson pole the
U matrix reduces to the unit matrix with exponential cor-

rection ∼ e−mρ/T . Such corrections are too small to be re-
tained when we are calculating corrections of O(T 2) only.
The remaining diagonal matrix may be represented by its
11-component, which again admits a decomposition into
invariant amplitudes like that of Πµν in (A.9) with the
longitudinal and the transverse ones being again related
for q = 0 as in (A.14) for Πl,t.
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